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Although aerobic glycolysis provides an advantage in the hypoxic
tumor microenvironment, some cancer cells can also respire via
oxidative phosphorylation. These respiring (“non-Warburg”) cells
were previously thought not to play a key role in tumorigenesis
and thus fell from favor in the literature. We sought to determine
whether subpopulations of hypoxic cancer cells have different
metabolic phenotypes and gene-expression profiles that could in-
fluence tumorigenicity and therapeutic response, and we there-
fore developed a dual fluorescent protein reporter, HypoxCR,
that detects hypoxic [hypoxia-inducible factor (HIF) active] and/
or cycling cells. Using HEK293T cells as a model, we identified four
distinct hypoxic cell populations by flow cytometry. The non-HIF/
noncycling cell population expressed a unique set of genes in-
volved in mitochondrial function. Relative to the other subpopu-
lations, these hypoxic “non-Warburg” cells had highest oxygen
consumption rates and mitochondrial capacity consistent with in-
creased mitochondrial respiration. We found that these respiring
cells were unexpectedly tumorigenic, suggesting that continued
respiration under limiting oxygen conditions may be required
for tumorigenicity.

antiangiogenesis | metabolism | mitochondria

Changes in cancer-cell metabolism have been linked to genetic
alterations of oncogenes, tumor suppressors, and metabolic

enzymes (1–3). The hypoxic tumor microenvironment further
modifies metabolism through activation of hypoxia-inducible
factors (HIFs). The HIFs enhance tumorigenesis by stimulating
glycolysis, cell motility, and angiogenesis (4, 5). Thus, hypoxia
portends poor prognosis in common cancers, such as gastric,
lung, ovarian, pancreatic, prostate, and renal carcinomas (5).
Although Otto Warburg observed respiration in certain cancer

types, his obsession with aerobic glycolysis as a cause of cancer
promulgated the prevailing misconception that cancers only ex-
hibit the Warburg effect exclusive of respiration (6). Because the
hypoxic tumor microenvironment activates HIFs and diminishes
respiration, whether hypoxia enhances tumorigenicity at the ex-
pense of respiration is not fully understood (7). We found re-
cently that oxidative and glycolytic metabolism coexist in hypoxic
B lymphocytes, such that the shunting of glucose to lactate away
from the tricarboxylic acid cycle (TCA) cycle by hypoxia is
compensated through glutamine oxidation in the TCA cycle (8).
These metabolic aberrations suggest the existence of hypoxic
respiring (herein termed non-Warburg) cells capable of contin-
ued oxidative metabolism under hypoxic conditions. Further, it is
believed that cancer cells within the tumor microenvironment
are either aerobic or hypoxic because of oxygen gradients coming
from nearby imperfect blood vessels. An intriguing commensal
metabolic relationship between hypoxic and aerobic cells has
been documented, whereby hypoxic cells produce lactate that is
converted to pyruvate for respiration by aerobic cancer cells lo-
cated nearby the blood vessel (9). We hypothesize, however, that
hypoxic respiring cells could also participate in this commensal

relationship, specifically because oxygen becomes limiting for cy-
tochrome c oxidase and cellular respiration only around 0.1% and
0.5% oxygen, respectively (10). In this regard, we sought to de-
termine the gene expression and tumorigenic phenotypes of these
putative non-Warburg cells and other hypoxic tumor-cell sub-
populations. Toward this end, we developed a reporter system that
identifies hypoxic and/or cycling cells.
We constructed a dual fluorescent protein reporter system—

hypoxia and cell cycle reporter (HypoxCR)—that simultaneously
detects hypoxic and/or dividing cells. Using HEK293T cells stably
expressing HypoxCR as a model, we identified and purified four
distinct hypoxic cell populations by flow cytometry. We surmise that
these four populations reflect the heterogeneity of the solid tumor
microenvironment that we observed by microscopy in HEK293T
xenografts. Each hypoxic cell subpopulation has distinct gene-
expression profiles. The population that was HIF-negative and
noncycling had increased expression of mitochondrial genes. As
a purified population, these non-HIF/noncycling cells also had the
highest oxygen-consumption rate and mitochondrial capacity. Sur-
prisingly, we found that these cells were tumorigenic in xenografts,
similar to the cells that were HIF-positive and cycling. Neither HIF-
positive noncycling cells nor cycling HIF-negative cells were capable
of establishing tumor xenografts. Furthermore, we provide proof-of-
concept studies for the use of HypoxCR in vivo and found that
bevacizumab (VEGF pathway inhibitor) increased the HIF-positive
cell population, consistent with a vascular pruning effect.

Results and Discussion
HypoxCR, a Dual Fluorescent Protein Reporter, Identifies Subpopulations
of Hypoxic HEK293T Cells. We sought to understand whether sub-
populations of hypoxic cancer cells have different gene-expression
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profiles and metabolic phenotypes that might influence tumorige-
nicity and therapeutic responses. Toward this end, we developed
a dual fluorescent protein reporter, HypoxCR, that detects hypoxic
and/or cycling cells (Fig. 1A). We initially characterized a series of
vectors with five hypoxia responsive elements (HREs) driving ex-
pression of GFP fusion proteins and found that a sequence enriched
for proline, glutamate, serine, and threonin (PEST) degron is suf-
ficient to confer the desired shortened half-life of GFP that is es-
sential to detect HIF activity in real-time and its changes with
reoxygenation, which is commonly found in the tumor micro-
environment (11–13) (Fig. S1 and SI Text). Based on these
studies, we found that two HREs were sufficient for the hypoxic
response of the short-lived GFP and used this cassette to build
HypoxCR (Fig. 1B and Fig. S1). HypoxCR consists of two ex-
pression cassettes: a PEST destabilized GFP cDNA driven by two
VEGFA hypoxia responsive elements (HREs) and a pCMV-driven
fusion gene producing mCherry-geminin, which is stabilized in
S-G2M phases of the cell cycle (Fig. S1C) (14). The two expression
cassettes are separated by a spacer sequence (see SI Text for full
vector construction and validation).
We generated a stable HEK293T cell line that expresses

HypoxCR (293T-HypoxCR cells), purified it (Fig. S2 A–C), and
then characterized it by flow cytometry (Fig. 1 C–F). Under
aerobic conditions, the 293T-HypoxCR cells displayed two major

populations of GFP−/mCherry− (termed non-HIF/noncycling or
non-Warburg) and GFP−/mCherry+ (termed non-HIF/cycling)
cells (Fig. 1D). Upon exposing the 293T-HypoxCR cells to 16 h
of 2% oxygen (hypoxia), two additional HIF-positive populations
became apparent: GFP+/mCherry− (termed HIF/noncycling)
and GFP+/mCherry+ (termed HIF/cycling) cells (Fig. 1E).
We then mimicked the dynamic changes of blood flow in

tumors, which caused cycles of oxygen deprivation and sub-
sequent reoxygenation, by exposing cells to 2% oxygen for 16 h
and then returning them to 21% oxygen for an extra 4 h (13). We
observed an increase in mCherry-positive cells: the non-HIF/
cycling and HIF/cycling subpopulations, which we speculate may
have arisen from the non-HIF/noncycling and HIF/noncycling
cells, respectively (Fig. 1F). This observation is consistent with
our previous identification of a hypoxia-induced G1 checkpoint
and the ability of HIF-1α to inhibit DNA replication (15–17). We
speculate that reoxygenation relieved this checkpoint, permitting
the entry of noncycling cells into S-G2M phases of the cell cycle
as observed in Fig. 1F. We then used this condition in vitro to
model the heterogeneity of hypoxic tumor cells in vivo.
To ensure that the HRE-driven GFP reflects HIF-1α activity, we

overexpressed a stabilized HIF-1α with mutations at three proline
residues, which render the HIF-1α mutant resistance to prolyl hy-
droxylation and subsequent proteasomal degradation (18), and
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Fig. 1. (A) Schema of the HypoxCR dual fluorescent reporter of hypoxia and cell cycling. HypoxCR consists of two expression cassettes flanking a spacer
sequence. The hypoxia responsive cassette is shown with two hypoxia response element (2xHRE) driving the expression of a fusion gene of green fluorescent
protein (GFP) and a PEST degron. The cell-cycling reporter cassette consists of a CMV promoter driving expression of a fusion of mCherry and geminin tagged
with FLAG. Arrows depict transcriptional start sites. (B) HRE-driven short-lived GFP as a hypoxia reporter. Immunoblots of GFP at various times (in hours) of
reoxygenation following 16 h of hypoxia (2% oxygen). Norm, lysates from cells unexposed to hypoxia. Flow-cytometric analysis of control and 293T-HypoxCR
cells. (C) Analysis of control cells without HypoxCR, gating on mCherry and GFP fluorescence. (D) 293T-HypoxCR cells analyzed upon culturing in 21% oxygen.
(E) 293T-HypoxCR cells exposed to 16 h of 2% oxygen. (F) 293T-HypoxCR cells exposed to 16 h of hypoxia followed by 4 h of reoxygenation. 293T-HypoxCR
cells were grown in tissue culture for less than 3 wk, and this experiment was performed before all other experiments to ensure the dynamics of these
subpopulations.
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found an increase in GFP-positive aerobic 293T-HypoxCR cells
(Fig. 2A). Conversely, we document that loss of HIF-1α through
siRNA-mediated inhibition of expression resulted in a markedly
blunted GFP response under hypoxia (Fig. 2B).

Differential Gene Expression in Subpopulations of Hypoxic Cells
Reveals a Group with Persistent Expression of Mitochondrial Genes.
We sought to determine altered gene expression among the sub-
populations of hypoxic 293T-HypoxCR cells to gain insight into
hypoxic tumor-cell heterogeneity. 293T-HypoxCR cells are capa-
ble of proliferating under hypoxic conditions (Fig. 2C), making
them a suitable model to study the different subpopulation of cells
in hypoxia. In triplicate experiments, we flow-sorted cells similarly
treated as those shown in Fig. S2C and performed gene-expression
microarray analysis of four subpopulations of 293T-HypoxCR
cells. We identified 663 differentially expressed genes with P val-
ues <0.03 and performed an unsupervised clustering analysis (Fig.
3) that revealed distinct expression profiles in each of the four
different subpopulations (19).
The non-HIF/cycling cells appeared unique in that HIF was

inactive with an associated increase in expression of genes in-
volved in apoptosis and DNA repair as determined by gene set
enrichment analysis (20) (Fig. 3, box 1). This observation implies
that a subpopulation of hypoxic cells could remain in or enter into
S-G2M phases when HIF was inactive. Moreover, the HIF/cycling
cells share expression of genes in common with the non-HIF/
cycling cells (Fig. 3, boxes 1 and 2). Some of these genes are involved
in cell cycling as well as the stress-response genes, suggesting that
hypoxic cycling cells have DNA replication stress (Fig. 3, box 2).
We then examined the level of phosphorylated histone H2AX
(γH2AX), which signals DNA damage, and found that the double-
positive and the non-HIF/cycling cells had high levels of γH2AX,
suggesting that they had DNA replication stress (Fig. 4A).
A significant fraction of the HIF/cycling cells appear to have

arisen from the HIF/noncycling cells (Fig. 1 E and F) and thus
share some genes in common, such as hypoxia responsive genes
(Fig. 3, box 4). Intriguingly, the GFP-positive HIF/noncycling
cells have increased expression of hypoxia-inducible genes and
those that are altered by polycomb proteins (Fig. 3, box 4 and
Table S1). Unexpectedly, we found that the double-negative,
non-HIF/noncycling cells expressed a distinct set of genes that is
not seen in the other subpopulations (Fig. 3, box 3). This set is
enriched with nuclear encoded mitochondrial genes as de-
termined by gene-set enrichment analysis (20), suggesting that
this subpopulation respires under hypoxia.

Non-Warburg Cells Are Tumorigenic. To characterize the metabolic
states of the different hypoxic cell populations, we purified the
four populations of cells by flow sorting and immediately studied
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Fig. 2. (A)TransientexpressionofastabilizedmutantHIF-1α–inducedHRE-driven
GFP expression in normoxic cells. 293T-HypoxCR cells were transiently transfected
witha stabilizedmutantHIF-1α possessingmutations at threeproline residues and
analyzed by flow cytometry. (B) siRNA-mediated knockdown of HIF-1α–reduced
HRE-driven GFP expression in hypoxic cells. 293T-HypoxCR cells were transiently
transfected with siRNAs targeting HIF-1α, cultured in hypoxia, and then ana-
lyzed by flow cytometry. (C) 293T-HypoxCR cell growth under aerobic (21%
oxygen)andhypoxic (2%oxygen) conditions.All cellsweregrownat1×105 cells
per mL. Cell counts were performed in triplicate and shown as mean ± SD.
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them (Fig. 4B) (21). Using a Clarke’s oxygen electrode, the non-
HIF/noncycling cells were found to have the highest oxygen
consumption rate, which is compatible with their gene expression
profile enriched with genes involved in respiration. We further
studied the cell populations using the Seahorse XFe96 Extra-
cellular Flux Analyzer, which measures oxygen consumption rate
(OCR) as an indicator of oxidative phosphorylation (OXPHOS)
and extracellular acidification rate (ECAR) as an indicator of
glycolytic conversion of glucose to lactate. As illustrated in Fig. 4C,
we found that the non-HIF/noncycling cells had the highest resting
OCR or OXPHOS and the highest mitochondrial capacity after
treatment of cells with trifluorocarbonylcyanide phenylhydrazone
(FCCP), confirming the findings using the Clarke’s oxygen elec-
trode (Fig. 4B). They also had the lowest ECAR to OCR ratio,
suggesting that they are more oxidative than the other populations
of cells. The HIF-positive cell populations, by contrast, were
slightly less metabolically active and had the highest relative
acidification rates (ECAR/OCR ratios: (−/−) = 0.52; (+/+) = 0.62;
GFP = 0.67; mCherry = 0.61), which are consistent with increased
glycolysis driven by HIF-1α (Fig. 4D).

We further sought to determine the metabolic requirements of
the different hypoxic subpopulation of cells by nutrient withdrawal
or exposure to specific metabolic inhibitors. Using flow cytometry,
we found that glucose and glutamine withdrawal had distinct
effects on the 293T-HypoxCR cell subpopulations. In contrast to
glutamine deprivation, which resembles control, glucose with-
drawal resulted in a significant decrease in the GFP-positive or
HIF-positive cells (Fig. S3A). We also treated 293T-HypoxCR
cells with a glutaminase inhibitor, Bis-2-(5-phenylacetamido-
1,2,4-thiadiazol-2-yl)ethyl sulfide (BPTES) (8, 22, 23), and the fatty
oxidation inhibitor, etomoxir (24), and found that neither signifi-
cantly altered the distribution of the hypoxic cell populations (Fig.
S3B). These observations are consistent with the finding that HIF-
positive cells were more glycolytic (Fig. 4D) and suggest that the
cell subpopulations do not differentially depend on fatty-acid ox-
idation for survival and are not significantly affected by inhibition
of glutamine metabolism. It is notable however, that this behavior
may be unique to 293T and, thus, cell type-specific.
The discovery of a distinct subset of hypoxic cells led us to ask

whether tumorigenicity is diminished in the non-HIF/noncycling
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(non-Warburg) cells compared with those that were HIF-posi-
tive. We tested the tumorigenicity of purified subpopulations
using a tumor xenograft assay. We injected 106 purified cells,
which were insufficient for tumor formation, using the original
unsorted total population, which required 4 × 106 cells to es-
tablish tumors at a rate of 80% over 2 wk after injection. Tumor
formation was observed only in HIF/cycling and non-Warburg
(non-HIF/noncycling) subgroups (Fig. 5A). These observations
indicate that a distinct HIF-negative non-Warburg cell population
is tumorigenic. However, because of the flexibility of the non-
Warburg cell population to replenish other populations (Fig. S2),
it is anticipated that this population may have to expand in vivo
first into HIF-positive and mCherry-positive (cycling, dividing)
cells before going on to form tumors.

Detection of in Vivo Therapeutic Responses by HypoxCR. Currently,
in vivo or in situ detection of hypoxia could be achieved through
live imaging using positron emission tomography (PET) tracers
[18F-fluoromisonidazole (18F-MISO)], oxygen probes for micros-
copy, injectable fluorescent agents, or immunohistochemistry of
fixed tumor tissues (25, 26). In vivo or in situ detection of cell
proliferation could be achieved separately through PET imaging
using the tracer FLT (18F-labeled nonmetabolized thymidine

analog) or Ki-67 staining, respectively (26). The use of HypoxCR,
which couples the detection of hypoxia and cell proliferation, further
enables the visualization of tumor heterogeneity in situ through two-
photon microscopy that yields 3-dimensional reconstructed views
(Fig. 5B). The images reveal clusters of hypoxic 293T tumor cells
(Fig. 5B, green) from several angles of the reconstructed 3D image
in the center. Cycling cells (Fig. 5B, red) are clustered around
clusters and cords of hypoxic cells (Fig. 5B, green) with occasional
hypoxic and cycling cells seen (Fig. 5B, yellow).
With HypoxCR, we determined whether this reporter could de-

tect different responses of subpopulations of tumor cells to specific
types of therapy. We used bevacizumab (Avastin), an antibody
that recognizes and blocks vascular endothelial growth factor A
(VEGF-A) (27), to determine whether it affects different sub-
populations found in HEK293T tumor xenografts (6). We estab-
lished tumors with a size of 300 mm3 and then treated one group
(n = 5) of animals with control DMSO and another (n = 7) with
100 μg of bevacizumab intraperitoneally twice per week. Using in
situ imaging with multiphoton confocal microscopy of the trea-
ted tumor xenografts, we found that bevacizumab-treated tumors
have a significant relative increase in hypoxic cells compared
with the controls (P value = 0.04) (Fig. 5 C and D). This ob-
servation is consistent with vascular pruning caused by inhibiting
VEGF signaling. Therefore, not only is the HypoxCR reporter
a valuable tool to study the tumor microenvironment, but it is
also able to indicate which specific tumor-cell subpopulations are
sensitive to certain types of drugs.

Conclusion
Our studies demonstrate that HypoxCR can detect a non-Warburg
cell population among a mixture of hypoxic cancer cells. These
non-Warburg cells are tumorigenic as were ones that were cy-
cling and displayed the Warburg effect, illustrating that complex,
varied hypoxic tumor metabolic phenotypes contribute to tu-
morigenesis. However, because HypoxCR could not be used to
track individual cells, we cannot draw conclusions regarding the
dynamic relationship between the different cell populations.
Nonetheless, the use of HypoxCR illustrates tumor heteroge-
neity in situ and allows a means to detect the effects of drugs on
tumor-cell subpopulations. Along with previous in vivo studies
that documented the importance of respiration for RAS-medi-
ated tumorigenesis, our findings offer a cautionary note that
therapeutic strategies targeting cancer metabolism should con-
sider the metabolic heterogeneity among hypoxic cancer cells,
particularly the non-Warburg respiring cells (28–30).

Materials and Methods
Construction and Characterization of HypoxCR. The lentiviral HypoxCR vector
was constructed by standard PCR and subcloning methods and comprises two
expression cassettes flanking a spacer sequence, with 2xHRE sites driving
a destabilized GFP on one side and a CMV promoter driving a FLAG-tagged
fusion gene of mCherry and a codon-optimized version of geminin on the
other (see details in SI Text).

Purification of HypoxCR-Expressing HEK293T Cells. HEK293T cells were infected
with the HypoxCR lentiviral vector and selected with puromycin. Puromycin-
selected cells were further purified by flow sorting (see details in SI Text).

Metabolic Characterization. Clarke’s oxygen electrode was used as described (8).
The Seahorse instrument was used according to the manufacturer’s instructions.

Imaging of Cellular Heterogeneity in Xenografts of HypoxCR-Expressing
HEK293T Cells. Xenografts were explanted, cut at 2mm from the skin sur-
face, and mounted with Vetbond glue to a small Petri dish. The tumor was
bathed in saline and imaged in situ with a Zeiss LSM510META confocal with
a Coherent Chameleon two-photon laser tuned to 750 nm for mCherry and
910 nm for GFP (see details in SI Text).
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Fig. 5. (A) Rates of tumor formation of the 293T-HypoxCR cell sub-
populations. Rates of tumor formation are shown as percentages. The ex-
periment was repeated twice, and data are represented as mean ± SEM. (B)
Confocal microscopy of tumor xenograft. Three-dimensional reconstruction
of HEK 293T tumor xenograft images of hypoxic and/or cycling cells marked
with the HypoxCR lentiviral reporter. Representative views of a 293T-
HypoxCR tumor xenograft reveal subpopulations of tumor cells in vivo. A
215-μm–thick slice of a tumor cut 2 mm from the surface is shown from
different angles with a 450 × 450-μm window. Hypoxic (HIF; GFP) cells are
green and cycling (mCherry) cells are red; an occasional yellow (HIF/cycling)
cell was seen. (C) The bar graph shows the percentages of GFP to mCherry
cells found in randomly selected tumor areas from replicate experiments
with different treatments. Mice bearing tumor xenografts were then either
injected with control 5% (vol/vol) DMSO or 100-μg Bevacizumab (Avastin)
twice per week. All of the images were randomly selected for five mice of
the Control group and seven mice of the Bevacizumab group. The error bars
represent SEM. (D) Use of HypoxCR to detect therapeutic responses of dif-
ferent tumor subpopulations. Representative 3D confocal micrographs of
untreated and treated xenograft tumors are shown.
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Animal Studies. Animal study protocols were approved by The Johns Hopkins
University Animal Care and Use Committee.
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